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WORKING MEMORY

Reactivation of latent working
memories with transcranial
magnetic stimulation

Nathan S. Rose,”?* Joshua J. LaRocque,® Adam C. Riggall,"* Olivia Gosseries,"*
Michael J. Starrett," Emma E. Meyering,' Bradley R. Postle™>*

The ability to hold information in working memory is fundamental for cognition. Contrary

to the long-standing view that working memory depends on sustained, elevated activity,
we present evidence suggesting that humans can hold information in working memory
via “activity-silent” synaptic mechanisms. Using multivariate pattern analyses to decode
brain activity patterns, we found that the active representation of an item in working
memory drops to baseline when attention shifts away. A targeted pulse of transcranial
magnetic stimulation produced a brief reemergence of the item in concurrently measured
brain activity. This reactivation effect occurred and influenced memory performance

only when the item was potentially relevant later in the trial, which suggests that

the representation is dynamic and modifiable via cognitive control. The results support

a synaptic theory of working memory.

he ability to mentally retain information in
an accessible state, to manipulate it, and to
use it to guide behavior is a critical building
block for cognition. It has long been assumed
that the neural basis for this working mem-
ory (WM) ability is elevated and persistent neu-
ronal firing (7). This assumption has been called
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into question by recent proposals that infor-
mation can be held in WM via synaptic mecha-
nisms that do not require sustained, elevated brain
activity (2-4).

Building on theoretical frameworks that in-
formation can be held in WM in one of several
states of activation (5, 6), we recorded neural
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activity while participants performed a multi-
step task in which two items were presented as
memoranda for each trial. A cue indicated which
item would be tested by the impending recog-
nition memory probe, followed by the probe, then
by a second cue, and then a second probe (Fig. 1).
There was equal probability following the first
cue, but not the second, that the uncued item
might be needed for an ensuing memory judg-
ment. This procedure moves the uncued item into
a different state than the cued item, which, by
definition, is in the focus of attention (7). Cogni-
tive theories refer to the intermediate state of this
unattended memory item (UMI) as “activated
long-term memory” (LTM) (5, 6).

For experiment 1, multivariate pattern analy-
sis (MVPA) showed evidence for an active repre-
sentation of the UMI that dropped to baseline
levels (Fig. 2) (7-9). This suggests that informa-
tion in WM (but outside of focal attention) can
be maintained in a latent state via mechanisms
other than sustained, elevated activity. Although
a similar drop-to-baseline pattern is observed when
participants are instructed to drop information
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Fig. 1. General procedure. (A) In phase 1, functional magnetic resonance imaging (fMRI) data were acquired while participants performed a one-item delayed-
recognition task for words, faces, or directions of motion; these data were used for multivariate pattern analysis (MVPA). (B) Classifiers trained on the delay period
were used for subsequent analyses. For experiment 1, these classifiers were used to decode fMRI activity from phase 2 (Fig. 2). (C and D) For experiments 2 and 3, they
were used in a whole-brain searchlight conjunction analysis to generate participant-specific maps of category-sensitive areas (C); nonoverlapping areas were used for
transcranial magnetic stimulation (TMS) targeting in phase 2 (D). (E) In phase 2, single pulses of TMS were delivered during the postcue delay periods.
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from WM (10, II), here the UMI remained in
WM because, when so instructed by the second A
cue, participants accurately reactivated it and
used it to evaluate the final probe (Fig. 2B).

In three additional experiments, we tested the " = = =
hypothesis that if a UMI is encoded in a dis-
tributed pattern of synaptic weights and held in
a state that is more accessible than trial-irrelevant
information, the readout from a nonspecific
burst of activity filtered through this network
might reveal this latent representation (2) (fig.
S1). This would be consistent with the idea that
networks in the posterior cortex can be dynam-
ically configured as matched filters to encode
behaviorally relevant information (3, 4, 12, 13).

For experiments 2 and 3, participants per-
formed the phase 2 WM task (Fig. 1) while we
recorded electroencephalography (EEG) and
applied single-pulse transcranial magnetic stimu-
lation (TMS) 2 to 3 s after the cue. For experi-
ment 2, we targeted brain regions identified from
the phase 1 MRI task as preferentially support-
ing MVPA decoding for one category, but not
the other two. MVPA of the spectrally transformed
EEG data from only the phase 2 task detected 0.3 o
reliable evidence for an active representation of ’ ‘ .A ‘ - A ‘ ‘ [ | ‘ ‘
both memory items across the initial portlon. of 0 P 8 12 16 20 24 28 a2
the trial, until the onset of the first cue, at which Time from Sample (sec)
point decoding accuracy remained elevated for B
the attended memory item (AMI) but dropped to
the baseline for the UMI (14).

After a single pulse of TMS, there was a brief
recovery of MVPA decoding of the UMI—a “re-
activation effect”—before it returned to baseline
and remained there while the cued item was tested
[P = 0.01; Bayes factor (BF) = 3.64 against the
null] (Fig. 3A). TMS affected neither broadband
decoding of the AMI nor recognition memory
judgments (fig. S4). When we analyzed bandpass-
filtered data, the TMS reactivation effect was
isolated to signal from the beta band (fig. S5)
and was associated with a transient period of
above-chance decoding performance for both the
UMI and the AMI. The TMS reactivation effect
was specific for information that was in WM on
that trial, because above-chance MVPA perform-
ance, as assessed with the AUC (area under the
curve) analysis, necessarily means that TMS did
not activate a representation of the category that
was irrelevant on that trial.

In experiment 2, we administered blocks of
trials with TMS targeting one of the category-
selective regions, but we varied, on a trial-by-trial
basis, which category was the AMI and whi.ch A é 1‘2 2‘0 2‘ " 2‘8 3‘2
was the UML. Each block included trials for which Time from Sample (sec)
the UMI belonged to the targeted region’s pre-
ferred category, and trials for which it did not. | Fig. 2. Experiment 1 fMRI decoding (train phase 1, test phase 2): Classifier evidence as a func-
A TMS reactivation effect was observed (Fig. 3B) | tion of an item’s status, collapsed across stimulus category. After stimulus presentation (red and
whether or not TMS targeted the UMT’s category- | blue circles), delay-period classifier evidence for both items was elevated relative to the empirical
preferred region, although the effect was larger | baseline of evidence for the category that was not presented on that trial (“absent,” gray). Upon
and more prolonged when it did (BF = 4.02 | presentation of the first cue (red triangle), evidence for the cued category (red) remained elevated,
for targeted sites, 1.72 for nontargeted sites). | but for the uncued category (blue) dropped to baseline. (A) After the first probe (red square), on
This finding suggests that WM is supported by | half the trials the second cue designated that the same item would be tested by the second probe,
heightened connectivity between cortical networks | and evidence for the two categories remained the same relative to baseline. (B) When the second
that represent all trial-relevant information (AMI | cue designated the previously uncued item, evidence for the two categories reversed for the
and UMI) relative to trial-irrelevant information | remainder of the trial. Color-coded small squares at the top of each plot indicate P < 0.01; line
15, 16). width reflects SEM.

EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE:

SCIENCE sciencemag.org 2 DECEMBER 2016 + VOL 354 ISSUE 6316 1137

0.8 T T T T T T T

I Cued 1+ & Cued 2™
0.7+ | I Uncued 1% & Uncued 2 E
[ Absent

0.6

0.5

0.4

Pattern Classifier Performance (Evidence)

0.8 T T T T T T

I Cued 1%t -- Uncued 2
0.7+ | I Uncued 15 -- Cued 2™ i
[ Absent

Pattern Classifier Performance (Evidence)

0.3

°o®
| 4

H A H
16




RESEARCH | REPORTS

A
0.75 T T T T T T T
[ B B BN BN BN B BN BN BN B BN BN B B BN BN B BN BN BN BN BN BN BN BN BN B BN B BN |
| BN B BN BN B B BN B Bn B BN BN BN BN BN BN | | B B |
m AMI
LV
0.70 - B

0.65

0.60

0.55

Classifier Performance (AUC)

0.50

0.45
-8 -6 -4 -2 0 2 4 6 8
B Time from Cue (sec)
0.75 ‘ : ‘ ‘
HE B B B BN | I I | | I I |
H E E R EEEEEEEEEEEEDN n
070 F I TMS Targeted UMI

TMS Non-Targeted UMI

0.65

0.60

0.55

Classifier Performance (AUC)

0.50

-8 -6 -4 -2 0 2 4 6 8
Time from Cue (sec)

Fig. 3. Experiment 2 EEG decoding (train and test on phase 2 data): Classifier accuracy (area under
curve, AUC) as a function of an item’s status at the time of the first cue, collapsed across stimulus
category. AUC reflects classifier sensitivity to discriminating between evidence for the AMI or UMI relative
to the absent category. (A) Classification time series of the AMI and UMI upon stimulus presentation (red
and blue circles), the first cue (red triangle), TMS, and first probe (red rectangle), averaged over N = 18
sessions, 2952 trials (decoding ends where the AMI and UMI switched on 50% of the trials). (B) De-
coding UMIs as a function of whether TMS targeted that item’s phase 1-defined region or a different cat-
egory's region. Color-coded small squares at the top of each plot indicate P < 0.05; line width reflects SEM.

Retrocues that inform subjects that they can
drop an item from memory result in a rapid loss
of multivariate evidence for the no longer
relevant item (77, 17). Nonetheless, proactive inter-
ference from stimuli presented on previous trials
indicates that the brain retains a residual trace
of such recent, but no longer relevant, informa-
tion (Z8). An important test of state-based models
of WM is whether there is a functional distinc-
tion between UMIs (putatively held in a state
of activated LTM) and dropped information (no
longer in WM). In experiment 3, with a differ-
ent group of participants, we also administered
TMS after the second cue, after which the un-
cued item would no longer be relevant on the
trial, and at which point it should have the same
status as an irrelevant item. If the TMS reacti-
vation effect is a consequence of an item being
maintained in a privileged state, it should only
be observed when that item is still potentially
relevant for the trial. We also jittered the onset
of TMS between 2 and 3 s after the cues (14)
and standardized TMS by targeting the same
region on every trial for all participants—an
MVPA-defined region in the right precuneus
known to be critical for the top-down control of
visual attention (19) (Fig. 4A).

For the first half of the trial, the results from
experiment 3 replicated those from experiment
2 (Fig. 4B), with a robust TMS reactivation ef-
fect for the UMI (BF = 9.8 against the null). For
the delay period following the second cue, how-
ever, there was no evidence for significant decod-
ing of the uncued item following the TMS pulse
(BF = 34 in favor of the null). These results sug-
gest that UMIs are maintained in a different state
than are items that have been dropped from WM,
and that the mechanisms that maintain latent
representations in WM are dynamic and modifi-
able via cognitive control (20).

Because our design entails decoding at the
category level, it does not rule out the pos-
sibility that the TMS reactivation effect reflects
a general reinstatement of category context (21),
rather than the temporary activation of the
UMI itself. The idea that the representation of
the UMI itself drives this effect would be
strengthened by demonstrating that TMS can
influence recognition memory decisions on this
task. If the TMS reactivation effect reflects a
temporary reinstatement of the UMI back into
the focus of attention, participants should have
more difficulty rejecting the UMI as a lure when
probing their memory of the AMI.

In experiment 4, we presented recognition
memory probes that matched the AMI on 50%
of trials; of the 50% of nonmatch probes, 30%
were drawn from the same category as the AMI,
and a critical 20% matched the UMI (7). Par-
ticipants were instructed to reject memory
probes that did not match the AMI. Critically,
only for the first probe was there an increased
proportion of false alarms to the UMI for TMS
relative to no-TMS trials (Fig. 3C, P = 0.01, BF =
348) (14).

Our results have important implications for
the understanding of WM at many levels. They

EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE:

1138 2 DECEMBER 2016 « VOL 354 ISSUE 6316

sciencemag.org SCIENCE



RESEARCH | REPORTS

1007 * oTMsS
I @ Control

B 0.95
£
<]
© 0.90
c
L
H
S 0.85
o
o

0.80

0.75 1

AMI AMI_
Probe 1 Probe 2

Classifier Performance (AUC)

1st Phase Decoding AMI & UMI vs. Absent

2nd Phase Decoding AMI & UMI vs. Absent

070 T 1 1 T

= AMI
= UMI

Time from 15t TMS Pulse (sec)

Fig. 4. Results from experiments 3 and 4. (A) The MVPA-defined TMS target for experiments 3 and 4 (right precuneus). A, anterior; L, left; R, right;
P, posterior. (B) Classification time series from experiment 3 showing TMS reactivation of the UMI after the first cue, when the UMI was still relevant
(left), but not after the second cue, when the UMI was no longer relevant on the trial (right) averaged over 1152 trials. Color-coded small squares at the
top of each plot indicate P < 0.05; line width reflects SEM. (C) Experiment 4 recognition memory for AMI match probes (AMI,), AMI honmatch probes
(AMI;), and UMI (nonmatch) probes. *P < = 0.01; error bars denote SEM.

provide neural evidence for at least two levels
of WM that are distinct from the default state
of LTM representations (5, 6). They are inconsistent
with models positing just one level of WM stor-
age (22, 23). They also suggest that instead of
“activated LTM,” a more apt label for the second
level of WM would be “prioritized LTM.” Informa-
tion can be held in WM in latent “activity-silent”
traces (11, 20). What might be the physiological
bases of such representations? Computational
models of WM have proposed that short-term
synaptic plasticity could be the basis for the tran-
sient formation of weight-based networks that
can represent information over short time periods
2, 24).

Our results provide empirical evidence for
the existence of a short-term plasticity mech-
anism that is likely to be fundamental to a wide
range of cognitive functions involving attentional
selection (25) and may provide the building
blocks for long-term potentiation mechanisms
that support LTM (26). Therefore, our findings
introduce a potential avenue for reactivating and
strengthening representations that underlie many
classes of high-level cognition.
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Supplemental Material

Synaptic Theory of Working Memory
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Fig. S1. lllustration of the Synaptic Theory of Working Memory. When memory items are presented
and retained, their representations are activated. Attentional prioritization results in sustained
activation of attended memory items (AMls), but latent, synaptic-based representations of unattended
memory items (UMIs) in “prioritized long-term memory”; an exogenous burst of energy via transcranial
magnetic stimulation (TMS) can reactivate the latent, potentiated representations of UMls.

Methods
Participants
Participants (ages 18-34 yrs) were recruited from the undergraduate and graduate
student community of the University of Wisconsin—-Madison and were paid for their
participation. All had normal or corrected-to-normal vision, no reported history of neurological
disease, no other contraindications for MRI or TMS, and all gave written informed consent in
accordance with the local Institutional Review Board. Experiment 1 enrolled ten participants

who performed both task phases in the MRI scanner, as well as 14 participants who performed



the tasks in a behavioral-only testing session (Fig. S1). Experiment 2 had nine participants for
the Phase 1 MRI session and six of these participants participated in all three of the TMS-EEG
sessions in Phase 2, with 164 trials in each session (N=18 sessions, 2,952 trials). One participant
was excluded due to an incidental finding on the MRI; one participant dropped out of the study
after the phase 1 MRI session; and one participant was excluded from analysis due to chance
level behavioral performance on Phase 2.

Experiment 3 had six participants who participated in both the Phase 1 MRI session and
a Phase 2 TMS-EEG session with 192 trials (N=1,152 trials). Experiment 4 had 20 participants
perform the Phase 2 task with TMS (N=7,200 trials) and 23 control participants that performed
the Phase 2 task in a behavioral-only testing session (N=8,280, 360 trials each). Data were
excluded from analysis for one control participant due to a programming error, and one TMS

and two control participants due to a misunderstanding of the task instructions.

Phase 1 — MRI session

Localizer task. In the first phase of each experiment, participants performed a one-item
delayed-recognition task in the MRI scanner that required the short-term retention of a face, a
word, or a direction of motion (see Fig. 1), and we applied MVPA to identify category-selective
regions for subsequent targeting with TMS. On each trial of the task, a fixation cross appeared
for 1.5 sec, followed by target stimulus (1 sec), delay period (7.5 sec), recognition probe
stimulus (1 sec), response period and feedback (1 sec), followed by a variable inter-trial interval
jittered between 6 and 12 sec in steps of 2 s with a rectangular distribution. Participants

performed four runs of 18 trials each (72 total; 24 per category). Trials of the experimental



conditions in fMRI experiment (and all subsequent experiments) were randomly mixed within
blocks of trials, with short breaks for rest between blocks.

Participants were to indicate if the probe did or did not match the target stimulus in
terms of the features of the face, phonology of the word (rhyme), or direction of the moving
dots by pressing button 1 or 2 of the MRI compatible response box, respectively. For the
recognition probe, the face was either an exact match or the face with 50-70% shared genetic
features morphed using FaceGen Modeller Software; the word was either a rhyme or non-
rhyme; the patch (15° in diameter) of coherently moving dots (selected to be off the cardinal
axes to minimize verbal recoding) were moving in either the same direction or a direction

rotated clockwise or counterclockwise randomly between 5-45°.

Data acquisition and preprocessing. Whole-brain images were acquired with a 3-T MR
scanner at the Lane Neuroimaging Laboratory at the University of Wisconsin-Madison. For all
subjects, a high-resolution T1-weighted image was acquired with a fast spoiled gradient-
recalled-echo sequence (8.132 ms TR, 3.18 ms TE, 12° flip angle, 156 axial slices, 256 X 256 in-
plane, 1.0 mm isotropic). A gradient-echo, echo-planar sequence (2 s TR, 25 ms TE) was used to
acquire data sensitive to the BOLD signal within a 64 X 64 matrix (39 sagittal slices, 3.5 mm
isotropic).

The fMRI data were preprocessed offline using the Analysis of Functional Neurolmages
(AFNI) software package (27). All volumes were spatially aligned to the first volume of each run
using a rigid-body realignment and corrected for slice time acquisition. Linear, quadratic, and

cubic trends were removed from each run to reduce the influence of scanner drift. For



univariate analyses, data were spatially smoothed with a 4 mm FWHM Gaussian kernel and
warped to Talairach space (28). For MVPA, data were left in their native space (i.e.,

unsmoothed) and z-scored separately within each run for each voxel.

fMRI analyses. For univariate analysis, the sample, delay, and probe events within each
trial were modeled separately as a boxcar of the corresponding duration. These regressors
were convolved with a canonical hemodynamic response function and entered into a general
linear model (GLM) for analysis using AFNI. MVPA was performed using the Princeton Multi-

Voxel Pattern Analysis (www.pni.princeton.edu/mvpa) toolbox and custom routines in

MATLAB. Preprocessed MRI data from individual trial time points were used to train a classifier
to distinguish between the three stimulus categories. First, leave-one-trial-out cross-validation
with L2 regularized logistic regression was used to classify stimulus category on each TR based
on the signal from the top 2000 voxels identified by the omnibus F-test. The A penalty term was
set to 25 (based on prior analyses (11)) in order to reduce the contribution of less informative
voxels to classification. Classifier accuracy was based on the proportion of trials in which the
classifier chose the correct category label. Separate classifiers were trained and tested on each
time point in the trial in the leave-one-trial-out cross-validation scheme. The result of this
procedure is a time course of decoding accuracy for the entire trial, which can reveal the
evolution of a memory representation over time including a delay period (Fig. 1B).

Then separate whole-brain searchlight analyses were conducted for each subject
(Experiments 2 and 3) to classify both the presence vs. absence of each category and the

presence of each category vs. each of the other categories on one post-sample delay-period TR



(time =7 s) with a 3 mm sphere. The purpose of this analysis was to identify category-sensitive
regions that could accurately discriminate one category from the others (e.g., face vs. not a
face) at a high level (e.g., >75%) yet could not discriminate the other categories from one
another (e.g., word vs. motion 40-60%) (Fig. 1C, Fig. S2). Note that we selected TMS targets
based on the peak decoding accuracy of non-overlapping areas. For Experiment 2, the target

was defined separately for each category for each individual.

Fig. S2. Results of the wholebrain searchlight analysis that was used to select non-overlapping areas to
target with TMS for a representative subject. The color-coding depicts areas that could decode one
category from the others (e.g., word vs. not word in red) at >70% accuracy; overlapping areas are
indicted according to the color-coded Venn diagram.

The MVPA-defined TMS target for Experiments 3 and 4 was the right precuneus, (MNI

11 -81 44) near the bank of the occipito-parietal sulcus in posterior parietal cortex—the



motion-selective area for all subjects in Experiment 2 (>70% wholebrain searchlight

classification accuracy, t>9.0, p<.0001).

Phase 2 — fMRI (Experiment 1), Simultaneous TMS/EEG (Experiments 2 & 3), or Behavioral
only (Experiment 4)
Experimental task

Participants performed a two-item delayed recognition task with two retrocues and two
recognition probes per trial. A fixation cross appeared (.5 sec) and then two items from two of
the three categories were presented as to-be-remembered items (Exp. 1 = 1 sec; Exps. 2, 3, & 4
= 2 sec), followed by an initial delay period (Exp. 1 = 7 sec; Exp. 2 = 5 sec; Exps. 3 & 4 = 2 sec),
cue (.5 sec), a first post-cue delay period (4.5 sec), probe (1 sec), response & feedback (1.5 sec),
a second cue (.5 sec), a second post-cue delay period (4.5 sec), probe (1 sec), response &
feedback (1.5 sec), and an inter-trial interval randomly jittered between 2 and 4 sec. A single
pulse of TMS was delivered during the first post-cue delay period at either 2.5 s after the cue
offset (Exps. 2 & 4) or randomly jittered between 2-3 sec after cue offset in steps of 50 ms (Exp.
3) and then again during the second post-cue delay period (Exps 3 & 4, with the same timing
parameters as the first post-cue delay period). All tasks were programmed in Matlab with
Psychtoolbox functions to control stimulus presentation and record response accuracy and

timing.

TMS targeting and stimulation



TMS was targeted with a Navigated Brain Stimulation (NBS) system that uses infrared-
based frameless stereotaxy to coordinate the position of the coil and the participant’s head
according to the individual’s high-resolution MRI overlaid with the TMS target for each category
from the MVPA of the Phase 1 localizer task. TMS was delivered with a magnetic stimulator fit
with a focal single-pulse, figure-of-eight stimulating coil. NBS allows measurement of the
electrical field induced by TMS at the targeted cortex using a model of the participant’s head,
the coil position, and the estimated distance from the coil to the cortical target. TMS was
delivered to the individually defined targets to achieve an estimated intensity at the stimulation
target of 90-115 V/m (50-68% of stimulator output, depending on the thickness of the
subject’s scalp, cortex and depth of the target). The coil was oriented along the sagittal plane to
induce an anterior-posterior direction of current, with individual adjustments to minimize
artifact. Stimulator intensity, coil position, and coil orientation were held constant for each
participant for the duration of each session. To mask the sound of the TMS coil’s discharge,
participants listened to white noise through earbuds during testing at a titrated volume such
that the participant could not detect the click using a staircase thresholding procedure. The

stimulation parameters were in accordance with published TMS guidelines.

EEG recording

EEG was recorded with a 60-channel cap and TMS-compatible amplifier, equipped with
a sample-and-hold circuit that held amplifier output constant from 100 us before stimulation to
2 ms after stimulation. Electrode impedance was kept below 5 kQ. The reference electrode was

placed superior to the supraorbital ridge. Eye movements were recorded with two additional



electrodes placed near the outer canthi of each eye. The EEG was recorded between 0.1 and

350 Hz at a sampling rate of 1450 Hz with 16-bit resolution.

EEG preprocessing

Data were processed offline using EEGLAB (29) and Fieldtrip (30) toolboxes in MATLAB,
downsampled to 500 Hz, and bandpass filtered between 1 and 100 Hz with a notch filter
centered at 60 Hz. A spherical spline interpolation was applied to electrodes exhibiting
excessive noise. In order to minimize the TMS spike artifact, data were interpolated from 0-30
ms around the TMS pulse for Experiment 2. A TMS pulse was applied on all trial types of the
TMS-EEG experiments, which rules out an artifactually-based explanation of a TMS-induced
reactivation effect. Nonetheless, in order to minimize the TMS spike artifact, data were
interpolated from 0-30 ms around the TMS pulse for Experiment 2. Although this had no effect
on the MVPA decoding of power in the binned frequency data, filtering produced some small
distortions at the edges of the interpolated window (Movie S1). To better retain the shape and
timing of the waveform around the TMS pulse for Experiment 3, a median filter was applied to -
5 to 20 ms. Reassuringly, the results were not appreciably different (31) (for further details on

preprocessing steps for TMS-EEG analysis, see http://nigelrogasch.github.io/TESA/).

Independent components analysis was used to identify and remove components reflecting
residual muscle activity, eye movements, blink-related activity, and residual TMS-related
artifacts. Finally, the data were rereferenced to the average of all electrodes.

A Morlet wavelet transform was performed on the data using the Fieldtrip toolbox (30).

A wavelet at every integer frequency from 2 to 20 Hz and every other integer from 22 to 50 Hz



was used with a fixed, Hanning-tapered window of 0.5 sec as in (7). This transform resulted in
spectral power values at each of 34 frequencies and 60 channels, sampled every 0.5 sec, for
each trial. The spectral time series was smoothed by averaging each value with the two
preceding and two subsequent time points, such that each time point reflected the average
EEG data from a 2.5-sec window of activity. As in (7), this temporal smoothing procedure was
necessary to minimize the noise of the dynamic EEG signal. These data were the features used

for all subsequent pattern classification analyses.

Movie S1. The movie shows the scalp topography of the TMS-evoked response for one of the

stimulation sites for a representative subject.
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Fig. S3. The time frequency representation spectrogram for the whole trial timecourse from Experiment
3 time-locked to the first TMS pulse in electrode P2. The figure shows event related spectral
perturbations associated with the presentation of the stimuli (~5 Hz) and administration of TMS across
most frequencies. The spectral data depict the features that were used in the EEG decoding analyses.

MVPA decoding

MVPA was performed in MATLAB using the EEG Analysis Toolbox (32)
(code.google.com/archive/p/eeganalysis-toolbox/) together with the Princeton MVPA toolbox
(code.google.com/p/princeton-mvpa-toolbox). The classification algorithm used for this
analysis was L2-regularized logistic regression, with a penalty term set to 1 based on prior
research (7). Because participants performed the Phase 1 task in the MRI scanner, the EEG
decoding analysis scheme considered each 0.5 sec time point of the Phase 2 task as a separate
training exemplar, so that every trial yielded 40 exemplars. Each feature was z-scored across all

trials and time points. The leave-one-out cross-validation scheme trained a classifier on data



from 191 trials and then used this classifier to test the one withheld trial. This process was
repeated until every trial had been held out for testing.

To measure the classifiers’ ability to distinguish trials when a given category was present
(and either cued or uncued) from trials in which the category was absent, we used the area
under the receiver operating characteristic curve (AUC) as a metric (33, 34). Accuracy was
determined by scoring the classifier’s chosen category against the actual category, the
conventional measure of accuracy. AUC was computed separately for each stimulus condition
(i.e., for AMI and for UMI). For the AMI condition, for each stimulus category (i.e., faces,
motion, words) we computed the proportion of “hits” (e.g., for faces, the proportion of trials
when a face was the AMI and the classifier identified “face” as being present in the signal) vs.
“false alarms” (again for faces, the number of trials when a face was not in the memory set yet
the classifier identified “face” as being present in the signal). The analogous procedure was
used for the UMI condition. An AUC of greater than 0.5 indicates sensitivity to the category of
interest. Statistical significance of sensitivity was assessed with both Bayesian analyses and one-
tailed, one-sample t-tests of AUC values averaged across the three categories versus the zero
sensitivity value of 0.5, using data from the three sessions for each of the six participants.
Classifier evidence was averaged separately across cue-switch and cue-repeat trials for the
initially cued, initially uncued, and absent categories (Fig. 3 and Fig. 4, left panel). Note that in
Fig. 4, the analysis involved decoding the UMI on the first cue period of the trial and that, after
the first memory probe, the UMI would become the AMI in the second cue period on half of the
trials (i.e., cue switch trials). For Experiment 3, in which TMS was also administered in the

second post-cue delay period, the analysis was repeated to decode the category of the item



that was cued second or uncued second (or absent) during the latter half of the trial (Fig. 5,
right panel).

Hypotheses regarding the reactivation effect on decoding accuracy were tested with
Bayesian analyses to specifically compare evidence favoring the null versus the alternative
hypothesis using the formula advocated by (35), with the unit-information scaled-prior
conservatively set to the default value. In Experiment 2, for the timepoint immediately
following the TMS pulse, classification of the UMI significantly differed from chance, t(17) =
2.42, p = .01, which resulted in a Bayes Factor (BF) of 3.64, which is considered moderate
evidence in favor of the alternative (i.e., against the null) (35). Additionally, the reactivation
effect for the TMS targeted category, t(17)=2.53, p=.01, BF=4.02, was larger and more
prolonged than for the TMS non-targeted category, t(17)=2.0, p=.03, BF=1.72.

In Experiment 3, for the timepoint immediately following the first TMS pulse,
classification of the UMI significantly differed from chance, t(5) = 4.35, p < .005, resulting in a
Bayes Factor of 9.8, which is considered rather strong evidence against the null (35). In
contrast, for the timepoint immediately following the second TMS pulse, when the UMI was no
longer relevant, classification of the UMI did not differ from chance, t(5) = 0.2274 (p=.42),
resulting in a Bayes Factor of 3.4 in favor of the null. For further confirmation, analyses were
also conducted using the Bayes Factor calculations recommended by (36). For the timepoint
immediately following the first TMS pulse, with the upper bound of the uniform population
distribution set to the maximum classification of the UMI before the first cue (59% classification
accuracy), the Bayes Factor was 3,035.84 against the null. In contrast, for the timepoint

immediately following the second TMS pulse, with the upper bound of the uniform population



distribution set to the maximum reactivation effect of the UMI for all subjects following TMS
after the first cue (64% classification accuracy), the Bayes Factor for the timepoint immediately

following TMS after the second cue was 3.33 in favor of the null.

Supplemental Results
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Fig. S4. Mean proportion of correct recognition memory responses on Probe 1 and Probe 2 on
the phase 2 task for participants with or without single-pulse TMS during the delay period(s).
Relative to Probe 1, recognition accuracy was slightly poorer on probe 2, especially for cue-
switch trials (i.e., testing the item that was the UMI during the initial post-cue delay period, but

there was no effect of TMS on recognition memory performance F<1.0.
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Fig. S5. Features that are important for decoding category specific representations of the AMI
and UMI from the EEG: the AMI could be decoded from oscillations in the theta-band during
the recognition memory probe period; the AMI could be decoded from alpha-band activity
during the delay and memory probe phases; both the AMI and UMI could be decoded from the
beta-band following administration of TMS. Thus, oscillations in the beta-band underlie the

TMS-induced reactivation effect.

Supplemental Analyses for Experiment 4. To examine the effect of TMS on the ability to reject
the UMI nonmatch probes, a mixed, repeated-measures ANOVA on recognition performance
on nonmatch probes with stimulus type (UMI, AMInm), probe number (1, 2), and TMS
condition was conducted on the data presented in Fig. 5C. There was a significant main effect of

stimulus type, F(1,39)=15.37, p<.001, as well as a significant interaction between stimulus type



and TMS, F(1,39)=6.87, p=.01, because the UMI nonmatch probes were easier to reject than the
AMI nonmatch probes for all contrasts except for Probe 1 with TMS, meaning that there was an
increase in false alarms to the UMI probes following TMS on the first recognition memory test
when the UMI was still potentially relevant on the trial (Probe 1: TMS UMI=.86, AMInm=.87,
p=.35; Control UMI=.92, AMInm=.85, p<.001; Probe 2: TMS UMI=.85, AMInm=.81, p<.05;
Control UMI=.87, AMInm=.79, p<.001). There was also a significant main effect of probe
number because recognition memory performance was better overall for Probe 1 than Probe 2,
F(1,39)=26.93, p<.001.

The critical contrast between Probe 1 UMls for TMS vs. Controls, t(39)=2.33, p=.01, was
also supported Bayseian analysis: Bayes Factor = 3.50 in favor of the alternative; for Probe 2

UMIs for TMS vs. Controls, t(39)=0.48, p=.32, the Bayes Factor was 2.24 in favor of the null.

Source Localized Analyses of the TMS-Evoked Response. In an attempt to clarify the
anatomical substrates of working memory contents, we conducted source localization analyses
of the TMS evoked response on the data from Experiment 2, in which unique TMS targets were
utilized for each stimulus category. For each of the targeted stimulus categories, synthetic
measures of the brain’s response to TMS were computed separately for trials in which the
targeted category was represented in each state (attended, unattended, absent). The
significant current density (SCD) and significant current scatter (SCS) were computed using the
methods detailed in (37), and the perturbational complexity index was computed using the
methods detailed in (38).

First, epochs from -100 to 400 ms post-TMS were source localized using the 3-sphere

BERG forward model, modeled using 3,000 meshes derived from each subject’s anatomical



Significant Current Density (WA/mm?)

Significant Current Scatter (mm)

MRI. The global SCD measure is the sum of the absolute amplitude of all significant TMS-evoked
currents (in microamperes per square millimeter) observed between 0 and 400 ms post-TMS in
all cortical regions, identified using a nonparametric statistical procedure with n=70,000
bootstrapped samples relative to the prestimulus baseline (-100-0) (see (37) for further details).
Global SCS is the sum of the geodesic distances (expressed in mm) between the stimulated
brain region and significant current sources in distal brain regions. PCl uses the Lempel-Ziv
complexity algorithm on the SCD and SCS measures to gauge the amount of non-redundant

information in the matrix of significant currents scaled from 0 to 1 (see (38) for further details).
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Fig. S6. Timeseries (left panel) and source localization (brain maps in the right panel) of the
average significant current density (top row) and significant current scattering (bottom row) of
the TMS-evoked response on trials in which the targeted category was the attended memory

item (AMI), the unattended memory item (UMI), or absent.



Table S1. Synthetic measures of the TMS-evoked response.

Stimulus Absent Attended Unattended
Significant Current Density (uA/mm?)

Motion 6.9 (2.0) 6.0 (1.3) 5.3 (1.2)
Face 5.4 (1.8) 7.9(2.8) 8.2(2.7)
Word 7.7 (3.2) 7.5(2.7) 8.9 (3.0)
Mean 6.7 (1.9) 7.1(1.6) 7.4 (2.1)

Significant Current Scatter (mm)

Motion  4.57E+06 (1.22E+06) 3.50E+06 (6.47E+05) 3.22E+06 (7.84E+05)
Face 3.19E+06 (1.01E+06) 3.73E+06 (8.40E+05) 4.03E+06 (9.71E+05)
Word 4.31E+06 (2.01E+06) 4.32E+06 (1.85E+06) 5.17E+06 (2.29E+06)
Mean 4.02E+06 (1.41E+06) 3.85E+06 (1.11E+06) 4.14E+06 (1.35E+06)

Perturbational Complexity Index (PCI)*

Motion 0.442 (0.036) 0.418 (0.023) 0.405 (0.032)
Face 0.402 (0.041) 0.376 (0.033) 0.378 (0.056)
Word 0.399 (0.050) 0.393 (0.052) 0.425 (0.050)
Mean 0.415 (0.037) 0.396 (0.032) 0.403 (0.040)

These synthetic measures of the TMS-evoked response failed to distinguish between
any of the WM states of representation. All main effects and interactions on the global SCD,
SCS, and PCl measures failed to reach significance (ps>.05). Although these synthetic measures
have been successfully used to discriminate between varying states of consciousness, e.g.,
coma or non-REM sleep vs. wakefulness (38), or fixation vs. the perceptually identical delay
period of a WM task (37), it seems unlikely that these global measures of the brain’s response
to TMS during WM retention could distinguish between different states of accessibility for an
individual item that is represented either in an attended state or an unattended state from
items that were attended on previous trials. Thus, the MVPA decoding methods were more
sensitive to detecting multivariate patterns of brain activity associated with stimulus-specific

representations than the synthetic measures of voltage on the scalp in source-localized space.



To address more structural hypotheses about the precise anatomical substrates of
representations in working memory, future work should more directly probe for the presence
of stimulus specific representations in sensory or associative cortices. More invasive methods

than those used in the current work may be necessary to sufficiently address such hypotheses.
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