

Validation of Virtual Reality for Measuring Prospective Memory in Young and Older Adults Joseph Saito & Nathan Rose

University of Notre Dame

Introduction

- Prospective Memory (PM) consists of forming an intention for future action and remembering to perform that action at the appropriate time
- PM is crucial for independent living, especially in older adulthood, where failures in PM can yield significant negative outcomes (Einstein & McDaniel, 1920; Park et al., 1997: Hering et al., 2018)

How is Prospective Memory measured? Conventional measures include:

JOB SIMULATOR

(1) Relatively demanding ongoing task (2) Embedded PM tasks

Dependent Measures: (1) Performance accuracy (2) Time deviation measures

Rose et al. 2015. Frontiers of Human Neuroscienc

How does Ecological Validity Affect PM Assessment?

Participants: 59 Notre Dame students (Age 18-30, mean=19.4) & 52 older adults (Age

56-83, mean=70.4) were screened for exclusionary cognitive and physiological criteria* and completed:

Two (2) Job Simulator Scenarios

Convenience store clerk

(2) Seven tasks/scenario to be memorized & executed

Irregular occurrence Task Regularity

Real-World Breakfast Task** Cooking a breakfast & Setting the Table 5 Breakfast Items: Time-Based Cues

Unsworth et al (2005) Behavior Research Method

Psychomotor Vigilance Task

Goldberg (1990) Journal of Personality & Social Psychology

Setting the Table Repeatedly

Operation Span Task

ummond et al. (2005) Sleep

Big Five Inventory

Cue Type

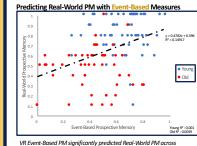
(1) Role-playing videogame_narrative

Event-Based Cues

Time-Based Cues

Regular occurrence

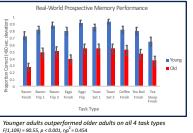
- Inconsistent age differences between naturalistic and lab-based measures
- Are naturalistic & lab-based measures capturing different aspects of PM? Age Prospective Memory Paradox; Rendell & Craik (2000); Lewis-Peacock et al. (2016); McDaniel & Einstein, (1990)
- What cognitive abilities can account for age differences in prospective memory performance?


Can Virtual Reality measure true prospective memory in younger and older adults?

Methods

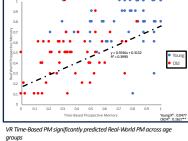
Younger adults significantly outperformed older adult in each task type F(1,109) = 108.9, p < 0.001, ηp² = 0.500

Cue Type x Age interaction was driven by larger age differences in time-based tasks F(1,109) = 13.35, p < 0.001, np² = 0.109



age groups R² = 0.149, p < 0.001

However, the correlation becomes insianificant when controlling for age in the correlation r = .045, p = 0.644


AGE DIFFERENCES IN PROSPECTIVE MEMORY

Main effect of task with no interactions F(9,101) = 13.35, p < 0.001, np² = 0.276

Age differences in performance were largest in those tasks with intermediary steps (e.g.) Bacon: t(109) = 5.39, p < 0.001, Δ M = 0.460

R² = 0.400, p < 0.001

Time-based VR performance was still a significant predictor even when controlling for variance driven by age group r = 0.312, p < 0.001

Conclusions

- Significant relationships between VR and Breakfast Task suggest enhanced ecological validity in the prior compared to conventional lab-based paradigms
- Working memory capacity yielded highest predictive power compared to PVT & BFI-however, models were unable to account for all age diff. in VR

Acknowledgements

Delaney Schrenk	
Anna Rohrer	The researchers declare no conflict of interest
Annie Birmingham	Funds for this study were provided by:
Mary Glass	William P. and Hazel B. White Collegiate Chair for
Lucie Moore	

*Telephone Interview for Cognitive Status (TICS) & Virtual Screening Question ** Adapted from Dresden Breakfast Task (Altgassen, Koban, & Kliegel, 2012)